Discrete chaotic calculus and covariance identities ∗

نویسندگان

  • Nicolas Privault
  • Wim Schoutens
چکیده

We show that for the binomial process (or Bernoulli random walk) the orthogonal functionals constructed in Kroeker [14] for Markov chains can be expressed using the Krawtchouk polynomials, and by iterated stochastic integrals. This allows to construct a chaotic calculus based on gradient and divergence operators and structure equations, and to establish a Clark representation formula. As an application we obtain simple infinite dimensional proofs of covariance identities on the discrete cube. AMS Subject Classification: 60H05, 60E15, 05E35.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic analysis of Bernoulli processes

These notes survey some aspects of discrete-time chaotic calculus and its applications, based on the chaos representation property for i.i.d. sequences of random variables. The topics covered include the Clark formula and predictable representation, anticipating calculus, covariance identities and functional inequalities (such as deviation and logarithmic Sobolev inequalities), and an applicati...

متن کامل

Non-linear Fractional-Order Chaotic Systems Identification with Approximated Fractional-Order Derivative based on a Hybrid Particle Swarm Optimization-Genetic Algorithm Method

Although many mathematicians have searched on the fractional calculus since many years ago, but its application in engineering, especially in modeling and control, does not have many antecedents. Since there are much freedom in choosing the order of differentiator and integrator in fractional calculus, it is possible to model the physical systems accurately. This paper deals with time-domain id...

متن کامل

Linear matrix inequality approach for synchronization of chaotic fuzzy cellular neural networks with discrete and unbounded distributed delays based on sampled-data control

In this paper, linear matrix inequality (LMI) approach for synchronization of chaotic fuzzy cellular neural networks (FCNNs) with discrete and unbounded distributed delays based on sampled-data controlis investigated. Lyapunov-Krasovskii functional combining with the input delay approach as well as the free-weighting matrix approach are employed to derive several sufficient criteria in terms of...

متن کامل

Finite Time Mix Synchronization of Delay Fractional-Order Chaotic Systems

Chaos synchronization of coupled fractional order differential equation is receiving increasing attention because of its potential applications in secure communications and control processing. The aim of this paper is synchronization between two identical or different delay fractional-order chaotic systems in finite time. At first, the predictor-corrector method is used to obtain the solutions ...

متن کامل

A Discrete Vector Calculus in Tensor Grids 1

Mimetic discretization methods for the numerical solution of continuum mechanics problems rely on analogs of vector calculus and differential forms identities in their derivation and analysis. Fully mimetic discretizations satisfy discrete analogs of the continuum theory results used to derive energy inequalities. Consequently, continuum arguments carry over and can be used to show that discret...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018